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Rigorous classical-mechanical derivation of a multiple-copy algorithm
for sampling statistical mechanical ensembles

Christopher Adam Hixson and Ralph A. Wheeler
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~Received 26 March 2001; published 10 July 2001!

We derive a rigorous, multiple-copy simulation algorithm that is formally equivalent to conventional clas-
sical molecular dynamics for an ensemble of systems, but may be used for rapid geometry optimizations. The
derivation is accomplished by starting from an ensemble of copies of the entire system and applying a point
coordinate transformation to a large subsystem defined as the bath. After the transformation, each atom of the
bath is described by one ‘‘major’’ set of coordinates located at the average position of the ensemble of
equivalent atoms and a set of ‘‘minor’’ coordinates that when combined with the ‘‘major’’ coordinates represent
exact dynamics. Neglecting the ‘‘minor’’ set of coordinates results in a Hamiltonian and a probability density
equivalent to those used in existing multiple-copy methods. Neglecting Hamilton’s equations of motion for the
minor variables gives the equations of motion for locally enhanced sampling. Numerical tests indicate that the
algorithm can recover exact molecular dynamics of the ensemble, conventional multiple-copy dynamics, or
results of intermediate accuracy. Thus, the algorithm provides a rigorous basis for multiple-copy dynamics,
resolves many of the uncertainties associated with their current implementations, and offers the potential for
calculating ensemble average properties in conjunction with finding a system’s global minimum energy geom-
etry.

DOI: 10.1103/PhysRevE.64.026701 PACS number~s!: 45.10.2b, 02.70.Ns, 45.20.Jj, 87.15.Aa
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I. INTRODUCTION

More than ten years ago, Elber and Karplus presente
multiple-copy molecular dynamics method designed to
celerate a simulation’s convergence to a global energy m
mum @1#. The method, called locally enhanced sampli
~LES!, is based on creating a set of non-interacting copie
a small subsystem of primary interest and allowing a lar
subsystem, the ‘‘bath,’’ to interact with each copy of the su
system. The force each copied atom experiences from
bath is the total force the corresponding real atom wo
experience. The bath atoms, on the other hand, experi
the average of the forces due to the copied atoms. As a re
energy barriers that copies of the subsystem must overc
to avoid being trapped in local energy minima are decrea
compared to those in a conventional molecular dynam
simulation. LES and related mean field methods, have b
used successfully in a variety of optimization problem
@1–17#, but they suffer limitations common to otherad hoc
geometry optimization methods@18–26#: since the underly-
ing energy surface and/or its sampling is modified, the me
ods do not generate trajectories that correspond to any o
familiar statistical mechanical ensembles. So, phase-s
averaging over these trajectories is not useful in a statis
mechanical sense and any information obtained in this m
ner ~free energy differences, radial distribution functions,
even temperatures! must be used with caution. It shoul
come as no surprise, then, that data acquired from LES
been found to violate fundamental principles, including t
equipartition of energy theorem@27,28#. It has been claimed
@27–29# that this manifests itself as the ‘‘temperature disp
ity problem,’’ which is a failure of the subsystem and ba
temperatures to reach the same equilibrium value. On a s
rate issue, Stultz and Karplus have provided a proof t
1063-651X/2001/64~2!/026701~6!/$20.00 64 0267
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minima located using LES are not necessarily minima on
original energy surface@30#.

Although optimization methods based on mean fie
theory show great practical utility@1–17,31–33#, current
multiple-copy implementations are clearly flawed. The c
rent contribution was inspired by LES, but our approach
intended to improve phase-space sampling by using a ri
ously derived method, so our approximations are well kno
and may be controlled. By controlling the approximation
we hope to generate trajectories that more closely appr
mate trajectories expected of systems belonging to one o
well-studied statistical mechanical ensembles. Our star
point is fundamentally different from that of Elber and Ka
plus, but it is nonetheless instructive to reiterate briefly th
rationale for LES. Next we describe known drawbacks
LES and attempts to remedy them. Finally, we derive o
generalization of multiple-copy methods, present a numer
test, and relate our algorithm to existing multiple-copy me
ods. Calculation of thermodynamic quantities will be r
ported separately.

II. CONVENTIONAL MULTIPLE-COPY MOLECULAR
DYNAMICS

As it was originally presented@1#, LES flows from the
assumption that the classical phase-space density ca
written as

r~X̄,t !5rs~X̄s ,t !rb~X̄b ,t !, ~1!

wherers is the density of the subsystem to be copied,rb is
the density of the bath, andX̄ is the vector that indicates th
system’s location in phase space. It is also assumed tha
bath’s density can be written as a single delta function:

rb~X̄b ,t !5d„X̄b~ t !…, ~2!
©2001 The American Physical Society01-1
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while the copied subsystem’s density can be taken to b
‘‘swarm’’ of delta functions, such as

rs~X̄s ,t !5 (
k51

C

wskd„X̄sk~ t !…, ~3!

where these represent the positions in phase space o
various copies, andwsk is a weighting function. In LES, the
wsk are taken to be 1/C, whereC is the number of copies
Requiring that this form of the phase-space density satis
Hamilton’s equations of motion for ensemble averages of
individual particles and momenta~derived from the Liouville
equation@34#! gives analogous differential equations descr
ing motions of the bath atoms and the copied system ato

q̇i ,k5
]Hk

]pi ,k
, ~4a!

ṗi ,k52
]Hk

]qi ,k
; ~4b!

Q̇i5 (
k51

C

wk

]Hk

]Pi
, ~4c!

Ṗi52 (
k51

C

wk

]Hk

]Qi
. ~4d!

Here, lower case variables refer to the copied subsystem
uppercase variables refer to the ‘‘bath.’’ Thei refers to the
coordinate index, whilek indicates the copy. The chose
form for the phase-space density is never rigorously justifi
but rather is rationalized by analogy to the time-depend
Hartree~TDH! approximation for quantum mechanical wa
fuctions. This analogy was previously used to obtain a si
lar, rigorous method intended for small molecules@35#, after
taking the quantum expression to the classical limit. T
original method is rigorous because the entire~small! system
is replicated and ‘‘trajectory bundles’’ are simulated, where
LES replicates only a small part of the system. Although
quantum mechanical analogy is very clever and insightfu
provides limited prospects for improving approxima
multiple-copy simulation methods and has left many work
wondering exactly how the approximation alters the dyna
ics.

To understand and resolve the limitations and uncert
ties inherent in LES, subsequent workers have tried to
multiple-copy methods on a more stable foundation. M
notably, Zheng and Zheng@29# claim a derivation of LES by
starting with copies of the entire system. Then, they perfo
a unitary transformation of coordinates for particles of t
bath and integrate out of the phase-space density all of
transformed variables except for those corresponding to
mean of the bath’s coordinates. The transformation emplo
was of the form

Qi5
1

n S (
k51

C

Qi ,kD , ~5a!
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Pi5
1

n S (
k51

C

Pi ,kD , ~5b!

Qi ,l8 5
1

n S Qi ,11 (
k52

C

cl ,kQi ,kD , ~5c!

Pi ,l8 5
1

n S Pi ,11 (
k52

C

cl ,kPi ,kD , ~5d!

where we refer to$Qi% i 51
N and$Pi% i 51

N as the ‘‘major’’ vari-
ables,$Qi ,l8 % i 51,l 52

N,C and $Pi ,l8 % i 51,l 52
N,C as the ‘‘minor’’ vari-

ables, and$ci , j% are the transform coefficients. The maj
variables correspond to the average position of the bath
ordinates for all of the copies, and the minor variables can
viewed as an orthogonal set of vectors that describe the
details of the dynamics. There are, of course, constraints
define the transformation. Not only must the coefficien
generate an orthogonal transformation, it is also conven
to normalize them such that

11 (
k52

C

cn,kcm,k5Cdm,n

with the additional constraint that

11 (
k52

C

cn,k50.

In their work, Zheng and Zheng used a probability dens
appropriate for the canonical ensemble and only conside
the special case of a harmonic potential energy function.
ter transforming and integrating out the minor variables, th
result seemed to imply that by choosing the value ofn used
in the transformation above, the temperature disparity pr
lem could be solved. The choice ofn5AC makes the trans-
formation canonical, which when applied to the arguments
@27# and @28#, the authors felt, would correct the equipar
tion problem for the harmonic potential considered.

To investigate the general temperature disparity proble
an originator of LES showed that LES conserves the follo
ing Hamiltonian@28#:

HLES5(
i 51

N Pi
2

2mi
1 (

i . j 51

N

V~Qi ,Qj !

1
1

C (
k51

C S (
i 51

S pi ,k
2

2mi
1 (

i . j 51

S

V~qi ,k ,qj ,k!

1(
i 51

S

(
j 51

N

V~qi ,k ,Qj !D , ~6!

whereS is the number of copied particles,C is the number of
times the particles are copied, andN is the number of unco-
pied ‘‘bath’’ particles. Lowercase variables refer to the co
ied particles, while uppercase variables indicate the ‘‘bat
Dynamical information is obtained by integrating the equ
tions
1-2
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q̇i ,k5C
]HLES

]pi ,k
, ~7a!

ṗi ,k52C
]HLES

]qi ,k
; ~7b!

Q̇i5
]HLES

]Pi
, ~7c!

Ṗi52
]HLES

]Qi
. ~7d!

This is an approximation to the dynamics ofC systems.
Straub and Karplus, who originally introduced the L

grangian generator of this Hamiltonian, propose energy s
ing as a solution for the temperature disparity problem@27#.
Ulitsky and Elber derived the Hamiltonian given above@28#
and noted that the TDH approximation does not follow t
classical virial theorem and therefore violates energy eq
partitioning, and claimed that this fault is the source of so
of the more apparent limitations of LES. To remedy th
Ulitsky and Elber appealed to the Boltzmann equation
transport theory and created an algorithm that monito
‘‘collisions’’ between atoms of copied particles and the ba
in analogy to the collision integral. Then, they modified th
dynamics to treat the collision exactly, instead of using
LES approximation. With this ‘‘collisional’’ LES~cLES!
scheme, they achieved improved behavior in the dynamic
systems studied@28,31#.

III. RIGOROUS ALGORITHM FOR MULTIPLE-COPY
DYNAMICS

Inspired by the insightful approach of Zheng and Zhe
@29#, we decided to take an exact expression for an ensem
of C independent copies of a system, and transform it
obtain an exact multiple-copy dynamics for systems with
more general potential energy function than the harmo
form considered by Zheng and Zheng. Using a transfo
similar to the one given above makes this possible. The
is to realize that the reverse transform has the form

Qi ,15
C

n S Qi1 (
k52

C

Qi ,k8 D , ~8a!

Pi ,15
C

n S Pi1 (
k52

C

Pi ,k8 D , ~8b!

Qi ,k5
C

n S Qi1(
l 52

C

cl ,kQi ,l8 D , ~8c!

Pi ,k5
C

n S Pi1(
l 52

C

cl ,kPi ,l8 D , ~8d!

which can then be applied to the exact Hamiltonian ofC
noninteracting copies of a system. This can be done by
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writing the Hamiltonian of a collection ofC equivalent cop-
ies of the same system assuming a two-body form for
potential energy:

H5 (
k51

C S (
i 51

S pi ,k
2

2mi
1 (

i . j 51

S

V~qi ,k ,qj ,k!

1(
i 51

S

(
j 51

N

V~qi ,k ,Qj ,k!1(
i 51

N Pi ,k
2

2Mi

1 (
i . j 51

N

V~Qi ,k ,Qj ,k!D . ~9!

Here the first two terms are the energy due to the cop
subsystem, the middle term is the interaction energy betw
the copies and the bath, and the final two terms are the
ergy due to the bath. Applying the transform yields

H̃5(
i 51

S

(
k51

C pi ,k
2

2mi
1 (

i . j 51

S

(
k51

C

V~qi ,k ,qj ,k!1(
j 51

N n2Pj
2

2M jC

1 (
i . j 51

N

(
k51

C

VS C

n S Qi1 (
m52

C

cm,kQi ,m8 D ,

C

n S Qj1 (
m52

C

cm,kQj ,m8 D D 1(
j 51

C

(
k52

C n2Pj ,k8

2M jC

1(
i 51

S

(
j 51

N

(
k51

C

VS qi ,k ,
C

n S Qj1 (
m52

C

cm,kQj ,m8 D D .

~10!

Here, again, the first two terms are the energy of the cop
particles. The transform has split the bath energy into th
terms in Eq.~10!: the kinetic energy of the major variable
the potential energy due to the bath, and the kinetic ene
due to the minor variables. The last term in Eq.~10! is the
interaction energy between the copies and the bath.

Obviously, the original Hamiltonian can be used to ge
erate equations of motion, which can be integrated to ge
ate the desired trajectories. The transformed Hamiltonia
equations of motions, though, are more interesting. The
transformed, ‘‘copied’’ part is just the same as in the untra
formed representation, but the ‘‘bath’’ part is more comple
For example, the time derivative,

Q̇i5
1

n S (
k51

C

Q̇i ,kD ,

can be rewritten as

Q̇i5
1

n S (
k51

C
]H̃

]Pi

]Pi

]Pi ,k
D ,

which can finally be reduced to

Q̇i5
C

n2

]H̃

]Pi
. ~11!
1-3
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CHRISTOPHER ADAM HIXSON AND RALPH A. WHEELER PHYSICAL REVIEW E64 026701
Given all of this, the entire set of equations of motion can
rewritten as

q̇i ,k5
]H̃

]pi ,k
, ~12a!

ṗi ,k52
]H̃

]qi ,k
; ~12b!

Q̇i5
C

n2

]H̃

]Pi
, ~12c!

Ṗi52
C

n2

]H̃

]Qi
; ~12d!

Ṗi ,k8 52
C

n2

]H̃

]Qi ,k8
, ~12e!

Q̇i ,k8 5
C

n2

]H̃

]Pi ,k8
. ~12f!

These equations are the exact equations of motion in
transformed representation. It should be noted that in
5AC, we have a canonical transformation, as Zheng
Zheng accomplished for harmonic potentials. But ifn5C,
the point transform generated yields equations of motion
are very similar to the LES equations.~Other choices ofn
lead to other, equivalent representations of the dynamics,
may ultimately prove important.! Now, if all of the bath par-
ticles start from the same initial positions with the same
locities in all of the copies and all of the minor variables a
ignored ~assumed to vanish!, the LES equations of motion
are recovered. We claim that all of the error present in t
sort of multiple-copy method comes from this holonom
constraint and that previously noted faults flow from th
idea. Numerical simulations presented in Fig. 1 support
view for the temperature disparity problem. The flatte
curve in Fig. 1 shows the temperature of an argon bath
function of time and the curve that oscillates around it is
temperature of a single argon atom calculated using e
dynamics. The top, bold curve is the temperature of a sin
argon atom, represented by four copies, in the LES appr
mation. Clearly, the LES particle’s temperature does not
lax to equilibrium as it should, and its fluctuations are mu
larger than in exact dynamics. Our algorithm can be use
generate each curve in Fig. 1, including those intermed
between LES and exact dynamics. These curves were ge
ated using a scheme practically similar to cLES, but with
fundamental difference in implementation and basis.
cLES, ‘‘collisions’’ were detected by physical proximity be
tween a copied particle and a bath particle, whereas the
rection presented here calculates the ‘‘minor’’ variabl
forces ~the Ṗ8’s from above!, which are neglected in both
LES and cLES. Our method still ignores these forces wh
they are sufficiently small, but when the force exerted on
minor variable is greater than some threshold, the particl
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then removed from the bath and treated exactly, as if a c
ied particle. By adjusting the threshold force, the dynam
can be scaled from purely LES to exact dynamics, in pr
ciple visiting all points in between. This allows the comp
tational advantage of LES to be largely maintained, wh
providing a rigorous procedure that leads to improved
namics.

IV. COMPARISONS WITH CONVENTIONAL
MULTIPLE-COPY DYNAMICS

As most of the work produced to explain convention
multiple-copy dynamics depends on a phase-space de
approach@1,2,27–29# ~often involving the Liouville equa-
tion!, further comparisons of our work with previously pub
lished methods would be helped by casting our work in su
a formalism. First, we consider a formal representation of
density that satisfies the Liouville equation@34#,

r~X̄,t !5e2L̂tr~X̄,0! ~13!

whereL̂ is a Liouville operator,

L̂5(
i 51

S

(
k51

C S ]H

]pi ,k

]

]qi ,k
2

]H

]qi ,k

]

]pi ,k
D

1(
i 51

N

(
k51

C S ]H

]Pi ,k

]

]Qi ,k
2

]H

]Qi ,k

]

]Pi ,k
D , ~14!

andr(X̄,0) is the density at time zero:

r~X̄,0!5S )
i 51

S

)
k51

C

d~qi ,k2qi ,k,0!d~pi ,k2pi ,k,0!D
3S )

i 51

N

)
k51

C

d~Qi ,k2Qi ,k,0!d~Pi ,k2Pi ,k,0!D .

~15!

FIG. 1. The flattest curve is the temperature as a function
time for a bath of 64 Ar atoms calculated using molecular dyna
ics. The curve that oscillates around it is the temperature of a si
Ar atom relaxing to equilibrium calculated using exact molecu
dynamics. The bold curve is the temperature of one Ar calcula
using the LES approximation. The curves between the exact
LES curves were calculated using the algorithm presented.
1-4
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Next, we apply the same point coordinate transformation
before to both the Liouville operator and the initial probab
ity density. This generates the transformed Liouvillian

L̂̃5(
i 51

S

(
k51

C S ]H̃

]pi ,k

]

]qi ,k
2

]H̃

]qi ,k

]

]pi ,k
D 1

C

n2 F(i 51

N S ]H̃

]Pi

]

]Qi

2
]H̃

]Qi

]

]Pi
D 1(

i 51

N

(
k52

C S ]H̃

]Pi ,k8

]

]Qi ,k8
2

]H̃

]Qi ,k8

]

]Pi ,k8
D G .

~16!

After applying the Jacobian of the transformation,J(X̄,X̄̃),
and assuming that the bath’s initial positions and veloci
are the same in all of the copies, the transform also gener
the density@36#,

r̃~ X̄̃,0!5
1

uJ~X̄,X̄̃!u
S )

i 51

S

)
k51

C

d~qi ,k2qi ,k,0!d~pi ,k2pi ,k,0!D
3S )

i 51

N

d~Qi2Qi ,0!d~Pi2Pi ,0!

3)
k52

C

d~Qi ,k8 !d~Pi ,k8 !D . ~17!

Thus the exact time-dependent phase-space density in

transformed representation,r̃( X̄̃,t), is formed by using the
transformed Liouvillian and transformed initial densities
the above formal expression. One can then follow the
ample provided in Zheng and Zheng’s work to arrive a

reduced density,r̃8(X̃8̄,t), that can be used to generate LE
type equations of motion. This is simply done by integrati
over the minor variables

r̃8~X̃8̄,t !5E dg8uJ~X̄,X̄̃!ueL̂̃tr̃~ X̄̃,0!, ~18!

wheredg8 is the volume element in the space that the min
variables occupy. Not only does this integration directly ge
erate a density that can be used to obtain the LES equa
of motion, but it also serves to enforce the holonomic co
straints that were found above to result in LES.

The approach presented to generate a multiple-c
method also sheds some light onto the violation of ene
equipartitioning @27# or equivalently, the incorrect viria
given by LES@28#. One of the well known results of class
cal mechanics is that the time~or assuming ergodicity, the
ensemble! average of the kinetic energy can be expresse
the following way@37#:

T̄52
1

2 (
i

^qiFi&, ~19!

where^A& is ensemble average of quantityA, and the sum-
mation is taken over all the degrees of freedom in the s
tem. In the canonical ensemble, this produces the fam
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result thatT̄5N/2b, whereN is the number of degrees o
freedom in the system,b is 1/kT, and it is assumed that th
potential diverges on the surface of the volume of integ
tion. This assumption corresponds physically to consider
a bound system. In this special case of a bound system,
itsky and Elber showed that the virial theorem generate
strange result,T̄5(N1CS)/2b, when applied in@28#. From
this expression, it appears that the temperature of the co
subsystem isC times hotter than the bath’s. Our approa
confirms this result, but demonstrates that this too can
traced to a neglect of the minor variables.

In the canonical ensemble, evaluating^qiFi& for a bound
system entails solving the integral

^qiFi&52
1

ZE dGdqiqi

]H

]qi
e2bH(qi ,G). ~20!

Here, Z is the partition function andqi can be any of the
coordinates described in this paper, be it major, minor,
untransformed. The integral is evaluated most easily by in
grating by parts and its exact value is21/b. Therefore, the
virial theorem generates an average kinetic energy for
ensemble ofC systems as simply

T̄52
1

2 (
i 51

S

(
k51

C K qi ,k

]H

]qi ,k
L 2

1

2 (
i 51

N

(
k51

C K Qi ,k

]H

]Qi ,k
L

5
~SC1NC!

2b
. ~21!

After making our transformation,

K Qi ,k

]H

]Qi ,k
L 5K C

n S Qi1(
l 52

C

cl ,kQi ,l8 D
3

C

n2 S ]H

]Qi
1 (

m52

C

cm,k

]H

]Qi ,m8
D L , ~22!

and using the result in the virial theorem, the exact res
T̄5(SC1NC)/2b, is generated. However, if the minor var
ables are ignored, one obtains the resultT̄5(N1CS)/2b.
So, the problem with the LES virial is simply a countin
problem and the average kinetic energy takes the Ulits
Elber form because of the reduced number of degrees
freedom found in LES.

V. CONCLUSIONS

Starting from an ensemble of identical systems and ap
ing a point transformation to the coordinates of a large nu
ber of ‘‘bath’’ particles generates an algorithm for efficient
replicating the dynamics of the ensemble. The transforma
gives a description of the bath in terms of ‘‘major’’ variable
located at the average phase-space position of equivalen
oms and a set of ‘‘minor’’ variables describing the finer d
tails of the bath dynamics. Numerical tests show that
algorithm can recover exact dynamics or give dynam
identical to conventional multiple-copy dynamics@1#, if the
1-5
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minor variables are neglected. If the minor variables are
cluded in the dynamics only when the corresponding for
exceed a chosen threshold, results of intermediate accu
are obtained. Varying the threshold force controls the ac
racy of the calculation and the computer time required.

Applying the point transformation to an ensemble of ide
tical systems also opens a new perspective on conventi
multiple-copy dynamics. First, neglecting Hamilton’s equ
tions of motion for the minor variables of the bath gives t
equations of motion that define LES@1#. Second, applying
the same point transformation to the Liouville equation a
probability density, followed by enforcing the holonom
constraint that the minor variables vanish, gives a probab
density similar to that assumed for LES. Third, neglect
the minor variables gives the same incorrect virial as LE
but including the minor variables yields the correct virial f
the ensemble. Finally, the success of collisional LES is
derstandable, as cLES includes the minor variable dynam
in an empirical way.

Since mean field theories such as LES have proven
tremely useful for locating global minima on complex fre
energy surfaces@1–17#, work is currently underway to de
e
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velop the algorithm described here into a similar tool.
addition, we are investigating the limitations of the algorith
for calculating ensemble average properties accurately
quickly.
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