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Rigorous classical-mechanical derivation of a multiple-copy algorithm
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We derive a rigorous, multiple-copy simulation algorithm that is formally equivalent to conventional clas-
sical molecular dynamics for an ensemble of systems, but may be used for rapid geometry optimizations. The
derivation is accomplished by starting from an ensemble of copies of the entire system and applying a point
coordinate transformation to a large subsystem defined as the bath. After the transformation, each atom of the
bath is described by one “major” set of coordinates located at the average position of the ensemble of
equivalent atoms and a set of “minor” coordinates that when combined with the “major” coordinates represent
exact dynamics. Neglecting the “minor” set of coordinates results in a Hamiltonian and a probability density
equivalent to those used in existing multiple-copy methods. Neglecting Hamilton’s equations of motion for the
minor variables gives the equations of motion for locally enhanced sampling. Numerical tests indicate that the
algorithm can recover exact molecular dynamics of the ensemble, conventional multiple-copy dynamics, or
results of intermediate accuracy. Thus, the algorithm provides a rigorous basis for multiple-copy dynamics,
resolves many of the uncertainties associated with their current implementations, and offers the potential for
calculating ensemble average properties in conjunction with finding a system’s global minimum energy geom-
etry.
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I. INTRODUCTION minima located using LES are not necessarily minima on the
original energy surfacg30].

More than ten years ago, Elber and Karplus presented a Although optimization methods based on mean field
multiple-copy molecular dynamics method designed to actheory show great practical utility)1-17,31-38 current
celerate a simulation’s convergence to a global energy minimultiple-copy implementations are clearly flawed. The cur-
mum [1]. The method, called locally enhanced samplingrent contribution was inspired by LES, but our approach is
(LES), is based on creating a set of non-interacting copies ofténded to improve phase-space sampling by using a rigor-
a small subsystem of primary interest and allowing a largePUsly derived method, so our approximations are well known
subsystem, the “bath,” to interact with each copy of the sub-2nd may be controlied. By controlling the approximations,
system. The force each copied atom experiences from th€ NOP€ to generate trajectories that more closely approxi-

bath is the total force the corresponding real atom woulcfnate trajectories expected of systems belonging to one of the

experience. The bath atoms, on the other hand, experieng\ée”'swd'ed statistical mechanical ensembles. Our starting

the average of the forces due to the copied atoms. As a resu oint is fqndamentally diffgrent frqm that (.)f Elber gnd Kar—.

: . ' lus, but it is nonetheless instructive to reiterate briefly their
energy barriers that copies of the subsystem must overcorrF tionale for LES. Next we describe known drawbacks of
to avoid being trappe_d in local energy minima are decreage ES and attempts to remedy them. Finally, we derive our
compared to those in a conventional molecular dynamicgenerajization of multiple-copy methods, present a numerical
simulation. LES and related mean field methods, have beefast and relate our algorithm to existing multiple-copy meth-

used successfully in a variety of optimization problemsygs. Calculation of thermodynamic quantities will be re-
[1-17], but they suffer limitations common to othad hoc  ported separately.

geometry optimization method48-26: since the underly-

ing energy surface and/or its sampling is modified, the meth- 1I. CONVENTIONAL MULTIPLE-COPY MOLECULAR

ods do not generate trajectories that correspond to any of the DYNAMICS

familiar statistical mechanical ensembles. So, phase-space . -
averaging over these trajectories is not useful in a statistical As it was originally pre;enteﬁl], LES flows fro'f” the
mechanical sense and any information obtained in this mana}s§umptlon that the classical phase-space density can be
ner (free energy differences, radial distribution functions, orertten as

even temperaturéa_smust be used with cagtlon. It should p(X,0) = pe(X, 1) pp(Xp 1), 1)
come as no surprise, then, that data acquired from LES has

been found to violate fundamental principles, including thewherep, is the density of the subsystem to be copiegljs

equipartition of energy theoref27,28. It has been claimed the density of the bath, and is the vector that indicates the
[27—-29 that this manifests itself as the “temperature dispar-system’s location in phase space. It is also assumed that the

ity problem,” which is a failure of the subsystem and bath path’s density can be written as a single delta function:
temperatures to reach the same equilibrium value. On a sepa-

rate issue, Stultz and Karplus have provided a proof that pu(Xp )= 8(Xp(1)), 2
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while the copied subsystem’s density can be taken to be a

C
“swarm” of delta functions, such as %( 2 ikl (5b)
— c — c
ps(Xs )= 3, Wed(Xsy(1), (3) o-taur, c|,in,k), (50
whgre thes_e represent the p.osit.ions in phase space of the L c
T FT ST

Requiring that this form of the phase-space density satisfies

Hamilton’s equations of motion for ensemble averages of thevhere we refer tdQiN , and{P W, as the “major” vari-

individual particles and momentderived from the Liouville  gples, {Q. |}. 1,-, and {P. |}| I1—, as the “minor” vari-

equatior{34]) gives analogous differential equations describ-ables, and{c; } are the transform coefficients. The major

ing motions of the bath atoms and the copied system atomsariables correspond to the average position of the bath co-
ordinates for all of the copies, and the minor variables can be

Qi v= IH (48 viewed as an orthogonal set of vectors that describe the fine
Ik IMPik’ details of the dynamics. There are, of course, constraints that
define the transformation. Not only must the coefficients
) IHy generate an orthogonal transformation, it is also convenient
Pi k= I (4D {0 normalize them such that
C
C
dHy 1+ D, chiCmk=CS3,
lekzl Wk_o'?P- ' (40) kgz n,kCm,k m.n
= I
c with the additional constraint that
) IH
Pi=—2 Wy——. 4 c
' k§=:1 “oQ (49 1+, ¢, =0.
k=2

Here, lower case variables refer to the copied subsystem and

uppercase variables refer to the “bath.” Theefers to the In their work, Zheng and Zheng used a probability density

coordinate index, whilek indicates the copy. The chosen appropriate for the canonical ensemble and only considered

form for the phase-space density is never rigorously justifiedthe special case of a harmonic potential energy function. Af-

but rather is rationalized by analogy to the time-dependenfer transforming and integrating out the minor variables, their

Hartree(TDH) approximation for quantum mechanical wave result seemed to imply that by choosing the value ofsed

fuctions. This analogy was previously used to obtain a simiin the transformation above, the temperature disparity prob-

lar, rigorous method intended for small molecu{i8s], after  lem could be solved. The choice of= \/C makes the trans-

taking the quantum expression to the classical limit. Theformation canonical, which when applied to the arguments in

original method is rigorous because the entamal) system [27] and[28], the authors felt, would correct the equiparti-

is replicated and “trajectory bundles” are simulated, whereagion problem for the harmonic potential considered.

LES replicates only a small part of the system. Although the To investigate the general temperature disparity problem,

guantum mechanical analogy is very clever and insightful, itan originator of LES showed that LES conserves the follow-

provides limited prospects for improving approximateing Hamiltonian[28]:

multiple-copy simulation methods and has left many workers N

wondering exactly how the approximation alters the dynam-

ics. Hies= Z
To understand and resolve the limitations and uncertain-

ties inherent in LES, subsequent workers have tried to put 1

multiple-copy methods on a more stable foundation. Most 6

notably, Zheng and Zheri@9] claim a derivation of LES by

starting with copies of the entire system. Then, they perform S N

a unitary transformation of coordinates for particles of the 2 2 V(q k,Q; )) (6)

bath and integrate out of the phase-space density all of the T

transformed variables except for those corresponding to th

mean of the bath’s coordinates. The transformation employe

was of the form

2 N

_+E V(Qi.Q))

i>j=1

c s p s
Z 22_ Z V(Q k.9 k)

hereSis the number of copied particleS,is the number of
mes the particles are copied, aNds the number of unco-
pied “bath” particles. Lowercase variables refer to the cop-
c ied particles, while uppercase variables indicate the “bath.”
( 2 | k): (58) Dynamical information is obtained by integrating the equa-
= tions
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) dH gs writing the Hamiltonian of a collection of equivalent cop-
g x=C F (78 ies of the same system assuming a two-body form for the
Lk potential energy:
. (QHLES C S 2 S
Pi=—C——; (7b) H= Pik S Vg a
Qi k &\ om i, (ql,k1qj,k)
. dHigs N p2
= k
Qi aP; (70) "’2 E V(Qi,k,Qj,k)"’E ﬁ
i=1j=1 i=1 i
JIHEs N
=T =a - (7d) + V(Qi k., Qi ) |- 9
' dQ; e (Qik:Qj K (9)
This is an approximation to the dynamics @fsystems. Here the first two terms are the energy due to the copied

Straub and Karplus, who originally introduced the La- subsystem, the middle term is the interaction energy between
grangian generator of this Hamiltonian, propose energy scathe copies and the bath, and the final two terms are the en-
ing as a solution for the temperature disparity prob[@7.  ergy due to the bath. Applying the transform yields
Ulitsky and Elber derived the Hamiltonian given abq28]
and noted that the TDH approximation does not follow the _ S [
classical virial theorem and therefore violates energy equi- HZE E St 2 V(Qi,kyqj,k)+z .

N . . . 2m; i1 k= =1 ZMJC
partitioning, and claimed that this fault is the source of some

S C N
2 nZPjZ

of the more apparent limitations of LES. To remedy this, N C C c

Ulitsky and Elber appealed to the Boltzmann equation of + > DV=| Qo+ cn Qi mls
transport theory and created an algorithm that monitored i=[=1k=1 N m=2
“collisions” between atoms of copied particles and the bath, C c c n2p!

in analogy to the collision integral. Then, they modified their —| Qi+ 2 cmkQ! | |+ E E ik
dynamics to treat the collision exactly, instead of using the ni =~ A= J =1k=22M;C
LES approximation. With this “collisional” LES(cLES) s c c

scheme, they achieved improved behavior in the dynamics of +3 S S vl E Qi+ ¢ Q!
systems studief28,31]. S s E iy | Mk, m

10
lll. RIGOROUS ALGORITHM FOR MULTIPLE-COPY (0

DYNAMICS Here, again, the first two terms are the energy of the copied

. o particles. The transform has split the bath energy into three
Inspired by the insightful approach of Zheng and Zhen erms in Eq.(10): the kinetic energy of the major variables,

[29], we decided to take an exact expression for an ensemb e potential energy due to the bath, and the kinetic energy

of C independent copies of a system, and transform it todue to the minor variables. The last term in E§Q) is the

obtain an exact multiple-copy dynamics for systems with 8nhteraction energy between the copies and the bath.

more general potential energy function than the harmonic Obviously, the original Hamiltonian can be used to gen-

form considered by Zheng and Zheng. Using a tranSfom?srate equations of motion, which can be integrated to gener-

§|m|lar to the one given above makes this possible. The ke(Vate the desired trajectories. The transformed Hamiltonian’s
is to realize that the reverse transform has the form

equations of motions, though, are more interesting. The un-
transformed, “copied” part is just the same as in the untrans-

C
C : p ; .
Q.=—| Qi+ 2 Qi',k): (8a) formed representa‘qon, but' thg bath” part is more complex.
n k=2 For example, the time derivative,
c 1S
F’i,1:H Pi+k22 Pi,,k)' (8b) Qi:ﬁ gl Qik|s
c can be rewritten as
_ +> / 8
Qik=11 Qi 2 CL Qi | (80) . _1( C Jf P, )
c ! Nn\k=1 ﬁpi &Pi'k !
Pik=% PHF;Z C|,kPi',|), (8d)  which can finally be reduced to
which can then be applied to the exact HamiltonianCof Qi:S ﬁ (11)
noninteracting copies of a system. This can be done by first n2 dP;
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Given all of this, the entire set of equations of motion can be 350
rewritten as
300
. aH 250
Qi,k_ﬁ, (123 g
Ik @ 200
2
~ g
. oH (12b §. 150
Pik=— 273
I i k % 100
. C oH 129 50 7
L= — -, C
Qi n2 JP; . - e
0.0 1.0 20 3.0 4.0 5.0
. C (9F| Time (ps)
Pi=—— o (120 - i
n2 dQ; FIG. 1. The flattest curve is the temperature as a function of
time for a bath of 64 Ar atoms calculated using molecular dynam-
c A ics. The curve that oscillates around it is the temperature of a single
|'3i' =—— ; (129  Ar atom relaxing to equilibrium calculated using exact molecular
n? Qi dynamics. The bold curve is the temperature of one Ar calculated
using the LES approximation. The curves between the exact and
] Cc oM LES curves were calculated using the algorithm presented.
L= . 12 .
Qi n? P/ (120 then removed from the bath and treated exactly, as if a cop-

ied particle. By adjusting the threshold force, the dynamics
These equations are the exact equations of motion in thean be scaled from purely LES to exact dynamics, in prin-
transformed representation. It should be noted thah if ciple visiting all points in between. This allows the compu-
=/C, we have a canonical transformation, as Zheng andational advantage of LES to be largely maintained, while
Zheng accomplished for harmonic potentials. Buh# C,  providing a rigorous procedure that leads to improved dy-
the point transform generated yields equations of motion thaamics.
are very similar to the LES equation@ther choices oh
lead to other, equivalent representations of the dynamics, and IV. COMPARISONS WITH CONVENTIONAL
may ultimately prove importantNow, if all of the bath par- MULTIPLE-COPY DYNAMICS
ticles start from the same initial positions with the same ve-
locities in all of the copies and all of the minor variables are
ignored (assumed to vanighthe LES equations of motion
are recovered. We claim that all of the error present in thi
sort of multiple-copy method comes from this holonomic

As most of the work produced to explain conventional
multiple-copy dynamics depends on a phase-space density
approach[1,2,27-29 (often involving the Liouville equa-
St|on) further comparisons of our work with previously pub-

€ lished methods would be helped by casting our work in such

constraint and that previously noted faults flow from th'Saformallsm First, we consider a formal representation of the
idea. Numerical simulations presented in Fig. 1 support th'%ensity that satisfies the Liouville equatif®d]
view for the temperature disparity problem. The flattest '

curve in Fig. 1 shows the temperature of an argon bath as a p(X,H)=e"p(X,0) (13)
function of time and the curve that oscillates around it is the

temperature of a single argon atom calculated using exagyherefl is a Liouville operator,

dynamics. The top, bold curve is the temperature of a single S
argon atom, represented by four copies, in the LES approxi- - d dH 9
mation. Clearly, the LES particle’s temperature does not re- LZ; Z (8p 90« IG;  Ip; k)
lax to equilibrium as it should, and its fluctuations are much " " " "
larger than in exact dynamics. Our algorithm can be used to N 9
generate each curve in Fig. 1, including those intermediate E E (&P P 30, . 9P,
between LES and exact dynamics. These curves were gener- “lk= Kk IQik ik IPik
ated using a sqheme praptiqally similar tp cLES, but vyith aandp(x 0) is the density at time zero:
fundamental difference in implementation and basis. In
CLES, “collisions” were detected by physical proximity be- _
tween a copied particle and a bath particle, whereas the cor- p(X,0)=
rection presented here calculates the “minor” variables’

forces (the P’’s from above, which are neglected in both

LES and cLES. Our method still ignores these forces when

they are sufficiently small, but when the force exerted on the

minor variable is greater than some threshold, the particle is (15

d JH

) (19

s cC
i=1 I]':[l o0 k=i k0 O(Pi k— pi,k,o)>

N C
x( T T1I 5(Qi,k—Qi,k,o)5(Pi,k_Pi,k,o))-

iI=1k=1
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Next, we apply the same point coordinate transformation agag it thatT = N/283, whereN is the number of degrees of

ﬁ;fg;;ﬁyquéhgelﬁgg'g: %%e:raatﬁrsg:gng:jeCgﬂihﬁ;ﬁbam freedo_m m_the systenB is 1KT, and it is assumed th_at the
potential diverges on the surface of the volume of integra-
N g tion. This assumption corresponds physically to considering
2 ( a bound system. In this special case of a bound system, Ul-
=1\ dP; <9Q| itsky and Elber showed that the virial theorem generates a

strange resultf = (N+CS)/28, when applied if28]. From
this expression, it appears that the temperature of the copied
subsystem isC times hotter than the bath’s. Our approach
confirms this result, but demonstrates that this too can be
(16 traced to a neglect of the minor variables.

= In the canonical ensemble, evaluatifggF;) for a bound
After applying the Jacobian of the transformatidiiX, X), system entails solving the integral
and assuming that the bath’s initial positions and velocities

are the same in all of the copies, the transform also generates 1 H i 1)
the density[36], (QF)=-5 dFinQia—qie e (20)

LESZ( g dH a)n

=1 k=1 \ 9Pjk i k ﬁqi,k IP; k

oH @

Qi JP;

P R 9 )
&P(k dQ( x ﬁQi,,k P«

S C . . .
_— Here, Z is the partition function and); can be any of the
p(X,0= (H Hl (0 ki ko) (i k~ Pi ko) coordinates described in this paper, be it major, minor, or
1 3(X, X)| T untransformed. The integral is evaluated most easily by inte-
grating by parts and its exact value-sl/B. Therefore, the
X H 3(Qi=Qi 0 d(Pi—Pj o) virial theorem generates an average kinetic energy for an
i= ensemble ofC systems as simply

C S N C
<I1 5<Q{,k)5<P(,k>). iy o ]33 2, (]

= ql kaquk

Thus the exact time-dependent phase-space density in the  (SC+NC)

transformed representatiop(X,t), is formed by using the 2B
transformed Liouvillian and transformed initial densities in

the above formal expression. One can then follow the eXAfter making our transformation,

ample provided in Zheng and Zheng's work to arrive at a oH c

reduced density,’ (X',t), that can be used to generate LES- <Q. 90 « > < Q|+E e ,)
type equations of motion. This is simply done by integrating b

over the minor variables C

oH
aQ. 2: Ok m)> (22

5'(X0= | dy' 9 X)IeHH(%.0), (18)
and using the result in the virial theorem, the exact result,

Wheredy is the volume element in the space that the mlnorT (SC+ NC)/Zﬂ is generated However, if the minor vari-
variables occupy. Not only does this integration directly gen-, ables are ignored, one obtains the res'I'Lﬁvt(N+CS)/2ﬁ
erate a density that can be used to obtain the LES equatlorésb the problem with the LES virial is simply a counting

of motion, but it also serves to enforce the holonomic con- oroblem and the average kinetic energy takes the Ulitsky-

straints that were found above to result in LES. . Elber form because of the reduced number of degrees of
The approach presented to generate a mqupIe—copyreedom found in LES

method also sheds some light onto the violation of energy
equipartitioning [27] or equivalently, the incorrect virial
given by LES[28]. One of the well known results of classi- V. CONCLUSIONS
cal mechanics is that the timer assuming ergodicity, the  Starting from an ensemble of identical systems and apply-
ensemblgaverage of the kinetic energy can be expressed ifihg a point transformation to the coordinates of a large num-
the following way[37]: ber of “bath” particles generates an algorithm for efficiently
replicating the dynamics of the ensemble. The transformation
T__ l 2 (QiF) (19) gives a description of the bath in terms of “major” variables
v located at the average phase-space position of equivalent at-
oms and a set of “minor” variables describing the finer de-
where(A) is ensemble average of quantiy and the sum- tails of the bath dynamics. Numerical tests show that the
mation is taken over all the degrees of freedom in the sysalgorithm can recover exact dynamics or give dynamics
tem. In the canonical ensemble, this produces the familiaidentical to conventional multiple-copy dynamigs|, if the
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minor variables are neglected. If the minor variables are invelop the algorithm described here into a similar tool. In
cluded in the dynamics only when the corresponding forceaddition, we are investigating the limitations of the algorithm
exceed a chosen threshold, results of intermediate accuragyr calculating ensemble average properties accurately and
are obtained. Varying the threshold force controls the accugquickly.
racy of the calculation and the computer time required.

Applying the point transformation to an ensemble of iden-
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